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Abstract We introduce the notion of ω-convergence of p-stacks and by using that notion we 

characterize the ω-interior, ω-closure, separation axioms and ω-irresoluteness on a topological 

space. 
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1. Introduction 

 

Generalized open sets play a very important role in General Topology and they are now the research 

topics of many topologists worldwide. Indeed a significant theme in General Topology and Real 

analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing 

generalized open sets. Sundaram and Sheik John [5] introduced a new class of generalized open 

sets called ω-open sets into the field of topology. In this paper, we have introduced and study the 

notion of ω-convergence of p-stacks and by using that notion we characterize the ω-interior, ω-

closure, separation axioms and ω-irresoluteness on a topological space. Also we have introduced a 

new notion of p-ω-compactness and investigate its properties in terms of ω-convergence of p-stacks. 

 

2. Preliminaries 

 

Throughout this paper, spaces always means topological spaces on which no separation axioms are 

assumed unless otherwise mentioned and f : (X,τ) → (Y,σ) (or simply f : X → Y ) denotes a function f 

of a space (X,τ) into a space (Y,σ). Let A be a subset of a space X. The closure and the interior of A 

are denoted by Cl(A) and Int(A), respectively. A subset A of a space (X,τ) is called semi open [1] if A 

⊂ Cl(Int(A)). A subset A of a space X is called ω-closed [5] if Cl(A) ⊂ U whenever A ⊂ U and U is 

semi-open in X. The complement of an ω-closed set is called an ω-open set. The family of all ω-open 

subsets of (X,τ) is denoted by ω(τ). We set ω(X,x) = {V ∈ ω(τ)|x ∈ V} for x ∈ X. The union (resp. 

intersection) of all ω-open (resp. ω-closed) sets, each contained in (resp. containing) a set A in a 

space X is called the ω-interior (resp. ω-closure) of A and is denoted by ω Int(A) (resp. ω Cl(A)) [4]. A 

subset M(x) of a topological space X is called a ω-neighbourhood of a point x ∈ X if there exists a ω-

open set S such that x ∈ S ⊂ M(x). Given a set X, a collection C of subsets of X is called a stack if A 

∈ C whenever B ∈ C and B ⊂ A. A stack H on a set X is called a p-stack if it satisfies the following 

condition: (P) A,B ∈ H ⇒ A    = ∅. Condition (P) is called the pairwise intersection property (P.I.P). A 

collection B of subsets of X with the P.I.P is called a p-stack base. For any collection B, we denote by 

<B> = {A ⊂ X: there exists B ∈ B such that B ⊂ A} the stack generated by B, and if {B} is a p-stack 

base, then <{B}> is a p-stack. We will denote simply <{B}> = <B>. In case x ∈ X and B = {x}, <x> is 
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usually denoted by 
.
x. Let pS(X) denote the collection of all p-stacks on X, partially ordered by 

inclusion. The maximal elements in pS(X) are called ultrapstacks is contained in an ultrapstack. For a 

function f : X → Y and H ∈ pS(X), the image stack f(H) in pS(Y ) has p-stack base {f(H) : H ∈ H}. 

Likewise, if G ∈ pS(Y), f−1(G) denotes the p-stack on X generated by {f−1(G) : G ∈ G}. 

 

Definition 2.1. Let (X,τ) be a topological space. A class {Gi} of ω-open subsets of X is said to be ω-

open cover of X if each point in X belongs to atleast one Gi that is∪ i Gi = X.  

 

Definition 2.2. A subset K of a nonempty set X is said to be ω-compact [4] relative to (X,τ) if every 

cover of K by ω-open sets of X has a finite subcover. We say that (X,τ) is ω-compact if X is ω-

compact. 

 

Definition 2.3. A topological space (X,τ) is said to be:  

 

(i) ω-T1 [3] if for each pair of distinct points x and y of X, there exist ω-open sets U and V 

containing x and y, respectively such that y / ∈ U and x / ∈ V . 

(ii) ω-T2 [3] if for each pair of distinct points x and y of X, there exist ω-open sets U and V such 

that x ∈ U, y ∈ V and U  V = ∅.  

(iii) ω-regular [4] if for any closed set F ⊂ X and any point x ∈ X\F, there exist disjoint ω-open 

sets U and V such that x ∈ U and F ⊂ V . 

 

Lemma 2.4. [2] For H ∈ pS(X), the following are equivalent: 

  

(i) H is an ultrapstack.  

(ii) If A H  = ∅ for all H ∈ H, then A ∈ H;  

(iii) B ∈ H implies X\B ∈ H.  

 

Theorem 2.5. [2] Let f : (X,τ) → (Y,σ) be a function and H ∈ pS(X).  

 

(i) If H is a filter, so is f(H);  

(ii) If H is an ultrafilter, so is f(H);  

(iii) If H is an ultrapstack, so is f(H). 

 

3. ω-convergence of p-stacks  

 

Definition 3.1. Let X be a topological space, x ∈ X and let B(x) = {V ⊂ X: V is a ω-neighbourhood of 

x}. Then we call the family  (x) the ω-neighbourhood stack at x.  

 

Definition 3.2. Let X be a topological space, x ∈ X and let B(x) = {V ⊂ X: V is a ω-neighbourhood of 

x}. Then we call the family  (x) the ω-neighbourhood stack at x. 

 

Theorem 3.3. Let (X,τ) be a topological space. Then we have the following  

 

(i) x ω-converges to x for all x ∈ X.  

(ii) If F ω-converges to x and F ⊂ G for F,G ∈ pS(X), then G ω-converges to x.  

(iii) If both F and G are p-stacks ω-converging to x, then F   G ω-converges to x.  

(iv) If p-stacks Fi ω-converge to x for all i ∈ J, then  Fi ω-converges to x. 

 

Proof. Follows from the definitions. 
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Theorem 3.4. Let (X,τ) be a topological space and A ⊂ X. Then the following are equivalent:  

 

(i) x ∈ ω Cl(A);  

(ii) There is F ∈ pS(X) such that A ∈ F and F ω-converges to x;  

(iii) For all V ∈  (x), A V  = ∅.  

 

Proof. (i) ⇒ (ii): Let x be an element in bCl(A), then U(x) A = ∅ for each ω-open U(x) of x. Let F = 

B(x)∪<A>. Then the p-stack F ω-converges to x and A ∈ F. (ii) ⇒ (iii): Let F be a p-stack and A ∈ F 

and p-stack F ω-converge to x. Then B(x) ⊂ F. Thus since B(x) is a p-stack, we get U  A  = ∅ for all U 

∈ B(x). (iii) ⇒ (i): It is obvious. 

 

Theorem 3.5. Let (X,τ) be a topological space and A ⊂ X. Then the following are equivalent:  

 

(i) x ∈ ω Int(A);  

(ii) For every p-stack F ω-converging to x, A ∈ F;  

(iii) A ∈ B(x).  

 

Proof. (i) ⇒ (ii): Let x be an element in bInt(A) and let F be a p-stack ω-converging to x. Since x ∈ 

bInt(A), there is a ω-open subset U such that x ∈ U ⊂ A, so A ∈  (x). Thus by the definition of ω-

convergence of p-stack, we can say A ∈F. (ii) ⇒ (iii): The ω-neighborhood stack  (x) is always ω-

converges to x. Thus by (ii), A ∈ B(x). (iii) ⇒ (i): It is obvious. 

 

Now by using ω-convergence of p-stacks, we characterize the properties of ω-T1, ω-T2 and ω-

regular induced by ω-open subsets on a topological space.  

 

Theorem 3.6. Let (X,τ) be a topological space. Then the following statements are equivalent:  

 

(i) (X,τ) is ω-T1;  

(ii)   (x) = {x} for x ∈ X;  

(iii) If ˙x ω-converges to y, then x = y.  

 

Proof. (i) ⇒ (ii): Let y be an element in  (x), then y ∈ U for each ω-open neighborhood U of x. Since 

X is ω-T1, we get y = x. (ii) ⇒ (iii): Let ˙x ω-converge to y. Since B(y) ⊂ ˙ x, x is an element in  (y). 

Thus x = y. (iii) ⇒ (i): Suppose that X is not ω-T1, then there are distinctx and y such that every ω-

open neighborhood of x contains y. Thus B(x) ⊂ ˙ y and ˙y ω-converges to x. This contradicts the 

hypothesis.  

 

Theorem 3.7. Let (X,τ) be a topological space. Then the following statements are equivalent:  

 

(i) (X,τ) is ω-T2;  

(ii) Every ω-convergent p-stack F on X ω-converges to exactly one point;  

(iii) Every ω-convergent ultrapstack F on X ω-converges to exactly one point.  

 

Proof. (i) ⇒ (ii): Suppose that X is ω-T2 and a p-stack F ω-converges to x. For any y  = x, there are 

disjoint ω-open sets U(x) and U(y) containing x and y, respectively. Since B(x) ⊂ F and F is a p-stack, 

both U(x) and X\U(y) are elements of F. Thus F is not finer than (y), so F doesn’t ω-converge to y. (ii) 

⇒ (iii): It is obvious. (iii) ⇒ (i): Suppose that X is not ω-T2. Then there must exist x, y such that U(x)   

U(y)  = ∅ for every ω-open sets U(x) and U(y) of x and y, respectively. Let F be a ultrapstak finer than 

a p-stack B(x) ⊂  (y). Then F is finer than  (x) and (y), so the ultrapstack F ω-converges to both x 

and y. This contradicts (ii). If (X,τ) is a topological space and F ∈ pS(X), then   = {ω Cl(F) : F ∈ F} is a 

p-stack base on X, and the ω-closure p-stack generated by   is denoted by ω Cl(F).  
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Theorem 3.8. Let (X,τ) be a topological space. Then the following statements are equivalent:  

 

(i) (X,τ) is ω-regular;  

(ii) For every x ∈ X,  (x) = ω Cl( (x));  

(iii) If a p-stack F ω-converges to x, then the ω-closure p-stack ω Cl(F) ω-converges to x. 

 

Proof. (i) ⇒ (ii): Let F be an element in B(x). There exists a ω-open neighborhood U(x) such that U(x) 

⊂ F. Since X is ω-regular, there is a ω-open neighborhood W(x) of x such that W(x) ⊂ ω Cl(W(x)) ⊂ 

U(x) ⊂ F. Since ω Cl(W(x)) ∈ ω Cl( (x)) and ω Cl( (x)) is a pstack, F ∈ ω Cl( (x)). (ii) ⇒ (iii): Let a p-

stack F ω-converge to x. Then B(x) ⊂ F, and so ω Cl( (x)) ⊂ ω Cl(F).  y (ii), we get that ω Cl(F) ω-

converges to x. (iii) ⇒ (i): Let U be a ω-open set containing x ∈ X. Since  (x) ω-converges to x, by (iii) 

ω Cl( (x)) ω-converges to x, and so U ∈ ω Cl( (x)). Then by the definition of the ω-closure of p-

stacks, we can get a ω-open neighborhood V of x such that V ⊂ ω Cl(V ) ⊂ U.  

 

Definition 3.9. A function f: (X,τ) → (Y,σ) is said to be ω-irresolute [4] if f−1(V ) is ω-closed (resp. ω-

open) in X for every ω-closed (resp. ω-open) subset V of Y. 

 

Theorem 3.10. Let X and Y be topological spaces. Then a function f : (X,τ) → (Y,σ) is ω-irresolute if 

and only if for each x in X and each ω-neighborhood U of f(x), there is a ω-neighborhood V of x such 

that f(V ) ⊂ U. Now we get another characterization of the ω-irresolute function on a topological space 

using the notion of p-stacks.  

 

Theorem 3.11. For a function f : (X,τ) → (Y,σ), the following statements are equivalent: (i) f is ω-

irresolute; (ii) B(f(x)) ⊂ f(B(x)) for all x ∈ X; (iii) If a p-stack F ω-converges to x, then the image p-stack 

f(F) ω-converges to f(x). 

 

Proof. (i) ⇒ (ii): Let V be any member of B(f(x)) in Y. Then there is a ω-open set W such that W ⊂ V. 

Since f is ω-irresolute, there exists a ω-open neighborhood U ∈ B(x) such that f(U) ⊂ W ⊂ V , thus V 

∈ f(B(x)). (ii) ⇒ (iii): It is obvious. (iii) ⇒ (i): If f is not ω-irresolute, then for some x ∈ X, there is a ω-

open neighborhood V ∈ B(f(x)) such that for all ω-open neighborhood U ∈ B(x), f(U) is not included in 

V. For all U ∈  (x), since f(U) (Y V )  = ∅, we get a p-stack F = f(B(x))∪ Y V  . And since U  f−1(Y V 

)  = ∅, also we get a p-stack G = B(x)∪f−1 Y\V   which ω-converges to x. But since f(G) is a finer p-

stack than F and Y\V ∈ F, f(G) can’t ω-converge to f(x), contradicting to (iii). 

 

Now we introduce a new notion of p-ω-compactness by p-stacks and investigate the related 

properties. 

 

Definition 3.12. Let (X,τ) be a topological space and A be a subset of X. A subset A of a topological 

space (X,τ) is p-ω-compact if every ultrapstack containing A ω-converges to a point in A. A 

topological space (X,τ) is p-ω-compact if X is p-ω-compact. 

 

Let X = {a,b,c}. In case τ is the discrete topology, let H be an ultrapstack containing a p-stack F 

generated by {{a,b},{b,c},{a,c}}. Then it doesn’t ω-converge to any point in X. Thus the topological 

space (X,τ) is not p-ω-compact.  ut in case τ = {∅,{a},{b,c},X}, the topological space (X,τ) is p-ω-

compact.  

 

Theorem 3.13. If a topological space (X,τ) is p-ω-compact and A ⊂ X is ω-closed, then A is p-ω-

compact. 

 

Proof. Let F be an ultrapstack containing A. From Definition 3.12, there is x ∈ X such that F ω-

converges to x. Thus B(x) ⊂ F, and since A ∈ F and F is a p-stack, A V  = ∅ for all V ∈ B(x). So by  
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Theorem 3.4, we can say x ∈ ω Cl(A) = A.  

 

Theorem 3.14. The ω-irresolute image of a p-ω-compact set is p-ω-compact.  

 

Proof. Let a function f : (X,τ) → (Y,σ) be ω-irresolute, let AX be p-ω-compact, and let H be an 

ultrapstack containing f(A). If G is an ultrapstack containing the p-stack base {f−1(H) : H ∈ H}∪<A>, 

then for some x ∈ A, G ω-converges to x, and H = f(G) ω-converges to f(x). Thus, f(A) is p-ω-

compact.  

 

Theorem 3.15. A topological space (X,τ) is p-ω-compact if and only if each ω-open cover of X has a 

two-element subcover. 

 

Proof. Suppose H is an ultrapstack in X such that it doesn’t ω-converge to any point in X. Then for 

each x ∈ X, there is a ω-open subset Ux ∈ B(x) such that Ux / ∈ H. By Lemma 2.4(iii), X\Ux ∈ H, for 

allx ∈ X. Thus U = {Ux : x ∈ X} is a ω-open cover of X. But U has no two-element subcover of X, for if 

U,V ∈ U and X ⊂ U ∪V , then (X\U) (X\V ) = X\(U ∪V ) = ∅, contradicting the assumption that H is a 

p-stack. Conversely, let U be a ω-open cover of X with no two-element subcover of X. Then B = {X\U: 

U ∈ U} is p-stack base, and any ultrapstack containing   cannot ω-converge to any point in X. 
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