

Research Article

On ω -Convergence of *p*-Stacks

K. Geetha, N. Rajesh

Department of Mathematics, Rajah Serfoji Government College, Thanjavur-613005, Tamil Nadu, India

Publication Date: 14 December 2017

DOI: https://doi.org/10.23953/cloud.ijams.329

Copyright © 2017. K. Geetha, N. Rajesh. This is an open access article distributed under the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract We introduce the notion of ω -convergence of *p*-stacks and by using that notion we characterize the ω -interior, ω -closure, separation axioms and ω -irresoluteness on a topological space.

Keywords Topological spaces; ω -open sets; ω -closed spaces

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Sundaram and Sheik John [5] introduced a new class of generalized open sets called ω -open sets into the field of topology. In this paper, we have introduced and study the notion of ω -convergence of p-stacks and by using that notion we characterize the ω -interior, ω -closure, separation axioms and ω -irresoluteness on a topological space. Also we have introduced a new notion of p- ω -compactness and investigate its properties in terms of ω -convergence of p-stacks.

2. Preliminaries

Throughout this paper, spaces always means topological spaces on which no separation axioms are assumed unless otherwise mentioned and $f: (X,\tau) \to (Y,\sigma)$ (or simply $f: X \to Y$) denotes a function f of a space (X, τ) into a space (Y, σ). Let A be a subset of a space X. The closure and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a space (X,T) is called semi open [1] if A \subset Cl(Int(A)). A subset A of a space X is called ω -closed [5] if Cl(A) \subset U whenever A \subset U and U is semi-open in X. The complement of an ω -closed set is called an ω -open set. The family of all ω -open subsets of (X,t) is denoted by $\omega(t)$. We set $\omega(X,x) = \{V \in \omega(t) | x \in V\}$ for $x \in X$. The union (resp. intersection) of all ω -open (resp. ω -closed) sets, each contained in (resp. containing) a set A in a space X is called the ω -interior (resp. ω -closure) of A and is denoted by ω Int(A) (resp. ω Cl(A)) [4]. A subset M(x) of a topological space X is called a ω -neighbourhood of a point $x \in X$ if there exists a ω open set S such that $x \in S \subset M(x)$. Given a set X, a collection C of subsets of X is called a stack if A \in C whenever B \in C and B \subset A. A stack H on a set X is called a p-stack if it satisfies the following condition: (P) A, B \in H \Rightarrow A \cap B \models Ø. Condition (P) is called the pairwise intersection property (P.I.P). A collection B of subsets of X with the P.I.P is called a p-stack base. For any collection B, we denote by $\langle B \rangle = \{A \subset X: \text{ there exists } B \in B \text{ such that } B \subset A\}$ the stack generated by B, and if $\{B\}$ is a p-stack base, then $\langle B \rangle$ is a p-stack. We will denote simply $\langle B \rangle = \langle B \rangle$. In case $x \in X$ and $B = \{x\}, \langle x \rangle$ is usually denoted by 'x. Let pS(X) denote the collection of all p-stacks on X, partially ordered by inclusion. The maximal elements in pS(X) are called ultrapstacks is contained in an ultrapstack. For a function $f : X \rightarrow Y$ and $H \in pS(X)$, the image stack f(H) in pS(Y) has p-stack base $\{f(H) : H \in H\}$. Likewise, if $G \in pS(Y)$, f-1(G) denotes the p-stack on X generated by $\{f-1(G) : G \in G\}$.

Definition 2.1. Let (X,τ) be a topological space. A class {Gi} of ω -open subsets of X is said to be ω -open cover of X if each point in X belongs to atleast one Gi that is \cup i Gi = X.

Definition 2.2. A subset K of a nonempty set X is said to be ω -compact [4] relative to (X, τ) if every cover of K by ω -open sets of X has a finite subcover. We say that (X, τ) is ω -compact if X is ω -compact.

Definition 2.3. A topological space (X,T) is said to be:

- (i) ω -T1 [3] if for each pair of distinct points x and y of X, there exist ω -open sets U and V containing x and y, respectively such that $y / \in U$ and $x / \in V$.
- (ii) ω-T2 [3] if for each pair of distinct points x and y of X, there exist ω-open sets U and V such that x ∈ U, y ∈ V and U ∩V = Ø.
- (iii) ω -regular [4] if for any closed set $F \subset X$ and any point $x \in X \setminus F$, there exist disjoint ω -open sets U and V such that $x \in U$ and $F \subset V$.

Lemma 2.4. [2] For $H \in pS(X)$, the following are equivalent:

- (i) H is an ultrapstack.
- (ii) If $A \cap H \models \emptyset$ for all $H \in H$, then $A \in H$;
- (iii) $B \in H$ implies $X \setminus B \in H$.

Theorem 2.5. [2] Let $f : (X,\tau) \to (Y,\sigma)$ be a function and $H \in pS(X)$.

- (i) If H is a filter, so is f(H);
- (ii) If H is an ultrafilter, so is f(H);
- (iii) If H is an ultrapstack, so is f(H).

3. ω-convergence of p-stacks

Definition 3.1. Let X be a topological space, $x \in X$ and let $B(x) = \{V \subset X: V \text{ is a } \omega \text{-neighbourhood of } x\}$. Then we call the family B(x) the ω -neighbourhood stack at x.

Definition 3.2. Let X be a topological space, $x \in X$ and let $B(x) = \{V \subset X: V \text{ is a } \omega \text{-neighbourhood of } x\}$. Then we call the family B(x) the ω -neighbourhood stack at x.

Theorem 3.3. Let (X, τ) be a topological space. Then we have the following

- (i) $x \omega$ -converges to x for all $x \in X$.
- (ii) If F ω -converges to x and F \subset G for F,G \in pS(X), then G ω -converges to x.
- (iii) If both F and G are p-stacks ω -converging to x, then F \cap G ω -converges to x.
- (iv) If p-stacks Fi ω -converge to x for all $i \in J$, then \cap Fi ω -converges to x.

Proof. Follows from the definitions.

Theorem 3.4. Let (X,τ) be a topological space and $A \subset X$. Then the following are equivalent:

- (i) $x \in \omega Cl(A)$;
- (ii) There is $F \in pS(X)$ such that $A \in F$ and $F \omega$ -converges to x;
- (iii) For all $V \in B(x)$, $A \cap V \models \emptyset$.

Proof. (i) \Rightarrow (ii): Let x be an element in bCl(A), then U(x) $\cap A = \emptyset$ for each ω -open U(x) of x. Let F = B(x) \cup <A>. Then the p-stack F ω -converges to x and A \in F. (ii) \Rightarrow (iii): Let F be a p-stack and A \in F and p-stack F ω -converge to x. Then B(x) \subset F. Thus since B(x) is a p-stack, we get U $\cap A \models \emptyset$ for all U \in B(x). (iii) \Rightarrow (i): It is obvious.

Theorem 3.5. Let (X,τ) be a topological space and $A \subset X$. Then the following are equivalent:

- (i) $x \in \omega$ Int(A);
- (ii) For every p-stack F ω -converging to x, A \in F;
- (iii) $A \in B(x)$.

Proof. (i) \Rightarrow (ii): Let x be an element in blnt(A) and let F be a p-stack ω -converging to x. Since $x \in$ blnt(A), there is a ω -open subset U such that $x \in U \subset A$, so $A \in B(x)$. Thus by the definition of ω -convergence of p-stack, we can say $A \in F$. (ii) \Rightarrow (iii): The ω -neighborhood stack B(x) is always ω -converges to x. Thus by (ii), $A \in B(x)$. (iii) \Rightarrow (i): It is obvious.

Now by using ω -convergence of p-stacks, we characterize the properties of ω -T1, ω -T2 and ω -regular induced by ω -open subsets on a topological space.

Theorem 3.6. Let (X, τ) be a topological space. Then the following statements are equivalent:

- (i) (X,τ) is ω-T1;
- (ii) $\cap B(x) = \{x\}$ for $x \in X$;
- (iii) If $x \omega$ -converges to y, then x = y.

Proof. (i) \Rightarrow (ii): Let y be an element in $\cap B(x)$, then $y \in U$ for each ω -open neighborhood U of x. Since X is ω -T1, we get y = x. (ii) \Rightarrow (iii): Let 'x ω -converge to y. Since $B(y) \subset 'x$, x is an element in $\cap B(y)$. Thus x = y. (iii) \Rightarrow (i): Suppose that X is not ω -T1, then there are distinctx and y such that every ω -open neighborhood of x contains y. Thus $B(x) \subset 'y$ and 'y ω -converges to x. This contradicts the hypothesis.

Theorem 3.7. Let (X, T) be a topological space. Then the following statements are equivalent:

- (i) (X,τ) is ω-T2;
- (ii) Every ω -convergent p-stack F on X ω -converges to exactly one point;
- (iii) Every ω-convergent ultrapstack F on X ω-converges to exactly one point.

Proof. (i) \Rightarrow (ii): Suppose that X is ω -T2 and a p-stack F ω -converges to x. For any $y \models x$, there are disjoint ω -open sets U(x) and U(y) containing x and y, respectively. Since B(x) \subset F and F is a p-stack, both U(x) and X\U(y) are elements of F. Thus F is not finer than (y), so F doesn't ω -converge to y. (ii) \Rightarrow (iii): It is obvious. (iii) \Rightarrow (i): Suppose that X is not ω -T2. Then there must exist x, y such that U(x) \cap U(y) $\models \emptyset$ for every ω -open sets U(x) and U(y) of x and y, respectively. Let F be a ultrapstak finer than a p-stack B(x) \subset B(y). Then F is finer than B(x) and (y), so the ultrapstack F ω -converges to both x and y. This contradicts (ii). If (X,T) is a topological space and F \in pS(X), then B = { ω Cl(F) : F \in F} is a p-stack base on X, and the ω -closure p-stack generated by B is denoted by ω Cl(F).

Theorem 3.8. Let (X, τ) be a topological space. Then the following statements are equivalent:

- (i) (X,τ) is ω -regular;
- (ii) For every $x \in X$, $B(x) = \omega Cl(B(x))$;
- (iii) If a p-stack F ω -converges to x, then the ω -closure p-stack ω Cl(F) ω -converges to x.

Proof. (i) \Rightarrow (ii): Let F be an element in B(x). There exists a ω -open neighborhood U(x) such that U(x) \subset F. Since X is ω -regular, there is a ω -open neighborhood W(x) of x such that W(x) $\subset \omega$ Cl(W(x)) \subset U(x) \subset F. Since ω Cl(W(x)) $\in \omega$ Cl(B(x)) and ω Cl(B(x)) is a pstack, F $\in \omega$ Cl(B(x)). (ii) \Rightarrow (iii): Let a p-stack F ω -converge to x. Then B(x) \subset F, and so ω Cl(B(x)) $\subset \omega$ Cl(F). By (ii), we get that ω Cl(F) ω -converges to x. (iii) \Rightarrow (i): Let U be a ω -open set containing x \in X. Since B(x) ω -converges to x, by (iii) ω Cl(B(x)) ω -converges to x, and so U $\in \omega$ Cl(B(x)). Then by the definition of the ω -closure of p-stacks, we can get a ω -open neighborhood V of x such that V $\subset \omega$ Cl(V) \subset U.

Definition 3.9. A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be ω -irresolute [4] if f-1(V) is ω -closed (resp. ω -open) in X for every ω -closed (resp. ω -open) subset V of Y.

Theorem 3.10. Let X and Y be topological spaces. Then a function $f : (X,\tau) \rightarrow (Y,\sigma)$ is ω -irresolute if and only if for each x in X and each ω -neighborhood U of f(x), there is a ω -neighborhood V of x such that $f(V) \subset U$. Now we get another characterization of the ω -irresolute function on a topological space using the notion of p-stacks.

Theorem 3.11. For a function $f : (X,\tau) \to (Y,\sigma)$, the following statements are equivalent: (i) f is ω -irresolute; (ii) $B(f(x)) \subset f(B(x))$ for all $x \in X$; (iii) If a p-stack F ω -converges to x, then the image p-stack $f(F) \omega$ -converges to f(x).

Proof. (i) \Rightarrow (ii): Let V be any member of B(f(x)) in Y. Then there is a ω -open set W such that $W \subset V$. Since f is ω -irresolute, there exists a ω -open neighborhood $U \in B(x)$ such that $f(U) \subset W \subset V$, thus $V \in f(B(x))$. (ii) \Rightarrow (iii): It is obvious. (iii) \Rightarrow (i): If f is not ω -irresolute, then for some $x \in X$, there is a ω -open neighborhood $V \in B(f(x))$ such that for all ω -open neighborhood $U \in B(x)$, f(U) is not included in V. For all $U \in B(x)$, since $f(U) \cap (Y \lor V) \models \emptyset$, we get a p-stack $F = f(B(x)) \cup (Y \lor V)$. And since $U \cap f-1(Y \lor V) \models \emptyset$, also we get a p-stack $G = B(x) \cup f-1(Y \lor V)$ which ω -converges to x. But since f(G) is a finer p-stack than F and $Y \lor V \in F$, f(G) can't ω -converge to f(x), contradicting to (iii).

Now we introduce a new notion of p- ω -compactness by p-stacks and investigate the related properties.

Definition 3.12. Let (X,τ) be a topological space and A be a subset of X. A subset A of a topological space (X,τ) is p- ω -compact if every ultrapstack containing A ω -converges to a point in A. A topological space (X,τ) is p- ω -compact if X is p- ω -compact.

Let X = {a,b,c}. In case τ is the discrete topology, let H be an ultrapstack containing a p-stack F generated by {{a,b},{b,c},{a,c}}. Then it doesn't ω -converge to any point in X. Thus the topological space (X, τ) is not p- ω -compact. But in case $\tau = {\emptyset,{a},{b,c},X}$, the topological space (X, τ) is p- ω -compact.

Theorem 3.13. If a topological space (X,τ) is p- ω -compact and A \subset X is ω -closed, then A is p- ω -compact.

Proof. Let F be an ultrapstack containing A. From Definition 3.12, there is $x \in X$ such that F ω -converges to x. Thus $B(x) \subset F$, and since $A \in F$ and F is a p-stack, $A \cap V \models \emptyset$ for all $V \in B(x)$. So by

Theorem 3.4, we can say $x \in \omega Cl(A) = A$.

Theorem 3.14. The ω -irresolute image of a p- ω -compact set is p- ω -compact.

Proof. Let a function $f : (X,\tau) \rightarrow (Y,\sigma)$ be ω -irresolute, let AX be p- ω -compact, and let H be an ultrapstack containing f(A). If G is an ultrapstack containing the p-stack base {f-1(H) : H \in H}U<A>, then for some $x \in A$, G ω -converges to x, and H = f(G) ω -converges to f(x). Thus, f(A) is p- ω -compact.

Theorem 3.15. A topological space (X,τ) is p- ω -compact if and only if each ω -open cover of X has a two-element subcover.

Proof. Suppose H is an ultrapstack in X such that it doesn't ω -converge to any point in X. Then for each $x \in X$, there is a ω -open subset $Ux \in B(x)$ such that $Ux / \in H$. By Lemma 2.4(iii), X\Ux \in H, for all $x \in X$. Thus $U = \{Ux : x \in X\}$ is a ω -open cover of X. But U has no two-element subcover of X, for if $U, V \in U$ and $X \subset U \cup V$, then $(X \setminus U) \cap (X \setminus V) = X \setminus (U \cup V) = \emptyset$, contradicting the assumption that H is a p-stack. Conversely, let U be a ω -open cover of X with no two-element subcover of X. Then B = {X \setminus U \in U} is p-stack base, and any ultrapstack containing B cannot ω -converge to any point in X.

References

- Levine, N. 1963. Semi-open sets and semi-continuity in topological spaces. *Amer. Math. Monthly*, 70, pp.36-41.
- [2] Kent, D.C. and Min, W.K. 2002. Neighbourhood spaces. Internat. J. Math. Math. Sci., 32(7), pp.387-399.
- [3] Maki, H., Sundaram, P. and Rajesh, N. Characterization of ω -T₀, ω -T₁ and ω -T₂ topological spaces (Under Preparation).
- [4] Sheik John, M. 2002. A study on generalizations of Closed sets and Continuous maps in topological and bitopological spaces, Ph.D. Thesis, Bharathiyar University, Coimbatore, India.
- [5] Sundaram, P. and Sheik John, M. 1995. *Weakly Closed sets and Weak Continuous maps in topological spaces*, Indian Science Congress, Calcutta, p.49.