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Abstract Finitesimale deformation in a rotating disc having variable density parameter has been 

studied by using Seth’s transition theory. With the effect of density variation parameter, rotating disc 

requires lesser angular speed for compressible as well as incompressible materials. Circumferential 

stresses are maximum at the internal surface for incompressible materials as compared to 

compressible material. Rotating disc is likely to fracture by cleavage close to the bore. 

Keywords Disc, Stresses, Deformation, Yielding, Angular Speed, Density 

 

1. Introduction 

 

Disc plays an important role in machine design. Stress analysis of rotating discs has an important role 

in engineering design. Rotating discs are the most critical part of rotors, turbines motor, compressors, 

high speed gears, flywheel, sink fits, turbo jet engines and computer’s disc drive etc. Solutions for thin 

isotropic discs can be found in most of the standard elasticity and plasticity textbooks [1, 2, 3, 4, 5]. 

Chakrabarty [4] and Heyman [6] solved the problem for the plastic state by utilizing the solution in the 

elastic state and consider the plastic range with the help of Tresca’s yield condition. Further, to obtain 

the elastic-plastic stresses, these authors matched the elastic and plastic stresses at the same radius 

r = c of the disc. Perfectly elasticity and ideal plasticity are two extreme properties of the material and 

the use of ad-hoc rule like yield condition amounts to divide the two extreme properties by a sharp 

line, which is not physically possible. Seth’s  transition theory [7] does not required any assumptions 

like an yield criterion, incompressibility condition, associated flow rule and thus poses and solves a 

more general problem from which cases pertaining to the above assumptions can be worked out. This 

theory [7] utilizes the concept of generalized strain measure and asymptotic solution at critical points 

or turning points of the differential equations defining the deformed field and has been successfully 

applied to a large number of problems [7-29]. Seth [8] has defined the generalized principal strain 

measures as: 
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Where n is the measure and ii

A

e  is the Almansi finite strain components. For n = -2, -1, 0, 1, 2 it gives 

Cauchy, Green Hencky, Swainger and Almansi measures respectively. In this research paper, we 

investigate the problem of finitesimale deformation in a rotating disc having variable density 

parameter by using Seth’s transition theory. The density of disc is assumed to vary along the radius in 

the form: 

 0 /
m

r b 


                                                                                                                               (2)  

Where 0  is the constant density at r = b and m is the density variation parameter. Results have 

been discussed and presented graphically. 

 

2. Mathematical Model 

 

We consider a thin annular disc of variable density with central bore of inner radius a and outer radius 

b is considered (Figure 1). 

 

 
 

Figure 1: Geometry of Rotating Disc. 

 

The disc is rotating with angular speed   of gradually increasing magnitude about an axis 

perpendicular to its plane and passing through the center. The thickness of disc is assumed small so 

that the disc is effectively in a state of plane stress, that is, the axial stress zzT  is zero. 

 

2.1 Formulation of the Problem 

 

Displacement components in cylindrical polar co-ordinate  , ,r z
 
are given by [8] as:  
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(1 )u r   , v = 0, w = dz                                                                                                       (3) 

Where   is position function, depending on r = 22 yx   only and d is a constant. 

 

The finite strain components are given by [8] as: 
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1 ;
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A
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A
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Where /d dr   and meaning of superscripts “A” is Almansi.  

 

By substituting eq. (4) in eq. (1), the generalized components of strain become: 
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1
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 

;
1

1 ne
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     ; 0r z zre e e                  (5) 

 

The stress–strain relations for isotropic material are given [5]: 

 

ijT  = 1 2i j ijI e  , (i, j = 1, 2, 3)                                                                                            (6) 

Where ijT  are stress components,   and   are Lame’s constants, 1 kkI e  is the first strain 

invariant, ij  is the Kronecker’s delta. 

 

Equation (6) for this problem becomes 
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By substituting eq. (5) in eq. (7), the stresses are obtained as: 
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and 0r z zr zzT T T T                                                                                                        (8) 

where C is the compressibility factor of the material in term of Lame’s constant, given by 

2 / 2 .C      

The equations of motion are all satisfied except: 

 

  2 2 0rr
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   

 

                                                                                                   (9) 

Where   is the density of the material of the rotating disc. 

By using eqs. (8) in eq. (9), we get a non- linear differential equation for 
 
as: 
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Where C is the compressibility factor of the material in term of Lame’s constant, given by 

2 / 2C      and P is dependence function of   and   is dependence function of r only.  

From eq. (10), the turning points of   are 1P  and  . 

 

A. Boundary Conditions The boundary condition of the rotating disc is: 

 

(i) 0rrT , r = a  

(ii) 0rrT   r = b                                                                                                                   (11) 

Where rrT  denote stress along the radial direction. 

 

B. Solution of Problem It has been shown that the asymptotic solution through the principal stress 

leads from elastic state to the plastic state (see Seth [7, 8], Gupta and Thakur [9-11] and Thakur 

Pankaj [12 - 29] at the transition point P . The transition function R  is defined as: 
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                                                               (12) 

 

Taking the logarithmic differentiating of eq. (12) with respect to r, we get: 
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By substituting the value of /dP d  from eq. (10) into eq. (13) and by taking asymptotic value   

P , one gets after integration:  

1R Ar                                                                                                                                     (14) 

Where A  is a constant of integration, which can be determined by boundary condition and by, 

1 2C C     is the Poisson’s ratio. 

From eq. (12) and (14), it follows: 
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                                                                                                                      (15) 

By substituting eq. (15) into eq. (9) and using eq. (2), then integrating, we get: 
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                                                                                      (16) 

Where B  is a constant of integration, which can be determined by boundary condition. 

 

By applying boundary condition from eq. (11) in eq. (16), we get:
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By substituting the value of A and B  into eqs. (15) and (16), we get: 
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equations (17) and (18) gives elastic-plastic transitional stresses in a thin rotating disc of variable 

thickness with edge loading. 

 

C. Initial Yielding of Rotating Disc It is seen from equ. (18) that T  is maximum at the internal 

surface (r = a). Therefore yielding will take place at the inner surface and equ. (18) become: 
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and angular speed i necessary for initial yielding is given by: 
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Where  
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D. Fully Plastic State of Rotating Disc The angular speed f i 
 
for which the rotating disc 

become fully plastic  1/ 2 0.5    at the external surface r = b, equation (18) becomes  
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and angular speed f necessary for initial yielding is given by: 
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and stresses and angular speed give by eqs. (20), (21) and (23) for fully plastic state 

 1/ 2 0.5    become: 
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Neglects density parameter (m = 0), transitional stresses and angular speed from eqs. (20)- (22) 

becomes: 
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and without density variation parameter, stresses and angular speed for fully plastic state from eqs. 

(24), (25) and (26) becomes: 
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3. Numerically Discussion 

 

For calculating the stresses based on the above analysis, the following values have been taken as C 

= 0.00, 0.25, 0.5, 0.75, m = 0, 1, 2 respectively. Curves have been drawn in figure 2 between angular 

speed 
2

i  required for initial yielding and various radii ratios baR /0   for C = 0, 0.25, 0.5 at m = 0, 
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1, 2. It has been observed that the rotating disc made of incompressible material required higher 

angular speed for initial yielding as compared to disc made of compressible materials. With effect of 

density variation parameter, rotating disc requires lesser angular speed as compared to without 

density variation parameter. It can also be seen from Table 1 that for compressible material higher 

percentage increased in angular speed is required to become fully plastic as compared to rotating 

disc made of incompressible material. 

 

 
 

Figure 2: Angular speed required for Initial Yielding State along the Radii Ratio Ro = a/b. 

 

Table 1: Angular Speed Required for Initial Yielding and Fully Plastic State 
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


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
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
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0 

1 

2 

0 

0 

0 

1.420161  

1.104569 

0.828427 

2.008411 

1.562097 

1.171573 

    18.92071307% 

    18.92073204% 

    18.92072679% 

0 

1 

2 

0.25 

0.25 

0.25 

1.383601 

1.076134 

 0.8071 

2.008411 

1.562097 

1.171573    

    20.48163765% 

    20.48162673% 

    20.48167691% 

0 

1 
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0.5 

0.5 

0.5 

1.336737 

1.039684 

0.779763 

2.008411 

1.562097 

1.171573 

    22.57539772% 

    22.57539993% 

    22.57541301% 

 

In figures 3 and 4, curve have been drawn between stresses and radii ratio R = r/b for elastic-plastic 

transition state and fully plastic state. It has been seen circumferential stresses is maximum at the 

internal surface for incompressible materials (C = 0) as compared to compressible materials (C = 

0.25, 0.5). Density variation parameter has a quit effect on circumferential stresses i.e. with the 

introduction of density variation parameter it decreases the values of circumferential stresses at the 

internal at the internal surface for transitional state and for fully plastic state. Rotating disc is likely to 

fracture by cleavage close to the bore. 
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Figure 3: Stresses Distribution in a Thin Rotating Disc for Initial Yielding State along the Radius Ratio R = r/b. 

 

 
 

Figure 4: Stresses Distribution in a Thin Rotating Disc for Fully-Plastic State along the Radius Ratio R = r/b. 

 

4. Conclusion 

 

It has been observed that with the effect of density variation parameter, rotating disc requires lesser 

angular speed for compressible as well as incompressible material. Circumferential stresses are 

maximum at the internal surface for incompressible materials as compared to compressible material. 

Rotating disc is likely to fracture by cleavage close to the bore. 
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