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Abstract In the present article the multivariate central limit theorem is revisited. Rather than simply 

reviewing existing methodology our approach mostly aims at giving particular emphasis on some 

univariate techniques that support the proof of this theorem. On those grounds all necessary 

mathematical arguments are duly provided.  
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1. Introduction 

 

The well-known central limit theorem for independent and identically distributed vector random 

variables is a very important result since it allows for an approximate normal distribution for the mean 

(and, equivalently, for the sum) of a sequence of a very large number of variables which satisfy the 

aforementioned properties; thus it has been extensively mentioned and used in existing literature. 

The idea of the present article emanates from Theorem 29.4 of [2, p. 383], and a subsequent 

comment, namely that “certain limit theorems can be reduced in a routine way to the one-dimensional 

case”. Based on that comment our intention is therefore to revisit the proof of this theorem in view of 

providing a detailed description of the way statistical theory that is used in the one-dimensional case 

(mentioned in the text as the univariate case) applies in a straightforward manner in order to deal with 

a multivariate problem.  

 

2. The Multivariate Central Limit Theorem 

 

The multivariate central limit theorem we will focus on is called Theorem 1 and is an early result 

which is very famous and well documented. For instance, it is found as Theorem 3.4.3 in [1, p. 81]. 

We first state this result. 
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Theorem 1 

 

Let 1 2, ,...X X  be a sequence of p-dimensional independent and identically distributed random 

vectors with finite mean vector ( )jE X   and finite variance-covariance matrix

( )( ) 'j jE X X     . Then the asymptotic distribution of 
1

1
( )

n

j

j

X
n




 converges towards a 

normal N(0, ) as n .  

 

Remark that in the univariate case, i.e. the case where p=1, Theorem 1 is just the univariate central 

limit theorem also called the Lindeberg-Lévy theorem (see for example [3, p. 215]). The proof of the 

multivariate central limit theorem, which we provide in the sequel, will be essentially based on 

techniques appearing in the proof of Lindeberg-Lévy’s theorem.  

 

Proof of Theorem 1 

Like in Theorem 3.4.3 of [1, p. 81], we use 1

1
[ ( )]

( , ) [ ( )]

n

j

j

is tX E tXj
n

t s E e 


  as characteristic function 

of
1

1
[ ( )]

n

j j

j

tX E tX
n 

 , for real s, fixed 1( ,..., )pt t t , and 
2 1i   . Also letting 

1

n

j

j

X tX


 , with 

( )jE tX m  and 
2( )jVar tX   we obtain 

1

( ) ( )
n

X j

j

E X m E tX nm


   , and 

2 2

1

( ) ( )
n

X j

j

Var X Var tX n 


    (or in other words
X n  ), since the jX ’s are 

independently distributed. We now adopt the same rationale as that used by [3, p. 215] for the proof 

of the Lindeberg-Lévy theorem. Let ˆ( )u  be the characteristic function of jtX m and ( )u the 

characteristic function of XX m . We have 

1 1[( ) ... ( )]( )( ) ( ) ( ) ( ... )n niu tX m tX m iutXiutXiu X m iunmu E e E e e E e e        , 

and since the jX ’s are independently distributed we obtain 

1 ˆ ˆ ˆ( ) ( )... ( ) ( )... ( ) [ ( )]niutXiutXium ium nu e E e e E e u u u        (since ˆ( ) ( )jiutXiumu e E e  , for any 

1,...j n ). Then, if ( )u  is the characteristic function of ( )X XX m  , we obtain

( ) ( )

( ) ( ) ( ) ( )
X

X
x X

X m u
iu i X m

X

u
u E e E e

  





   , with ˆ( ) [ ( )]n

X X

u u
 
 

  (since ˆ( ) [ ( )]nu u  ). 

Thus ˆ( ) [ ( )]nu
u

n
 


 .  

 

On the other hand ˆ( ) ( )iuyu e f y dy




  , where ( )j j jY tX E tX  , and by second order Taylor’s 

expansion around 0 we obtain  

                      

2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) (0) ( 0) '(0) [( 0) 2] ''(0) ( 0) (0) '(0) ( 2) ''(0) ( )u u u o u u u o u                
 



IJAMS– An Open Access Journal (ISSN 2348-5175)  

 

International Journal of Advanced Mathematics and Statistics 66 

 

 

where ˆ '( ) ( )iuyu i ye f y dy




   and 
2 2 2ˆ ''( ) ( ) ( )iuy iuyu i y e f y dy y e f y dy
 

 

    .  

Hence we have ˆ(0) ( ) 1f y dy




  , ˆ '(0) ( ) ( ) 0ji yf y dy iE Y




   , and 

2 2ˆ ''(0) ( ) ( )jy f y dy E Y




    , and so we obtain 
2 2 2ˆ( ) 1 [( ) 2] ( ) ( )ju u E Y o u    . 

Finally, since 
2 2( ) ( )j jE Y Var tX   , we obtain 

2 2 2ˆ( ) 1 ( 2) ( )u u o u    .  

Hence 
2 2 2 2ˆ( ) [ ( )] [1 ( 2 ) ( , ) ] (1 2 ( , ) )n n nu

u u n n u n u n n u n
n

     


          

where, for every fixed u , ( , )n u 0 as n .  

 

We now let 
2 2 ( , )x u n n u n   ; then lim ( ) 0n x  and 

2

2

2 / 2 ( , ) /

0 0

1/ / 2 1/ ( , )

0 0

lim (1 2 ( , ) ) lim (1 ) lim (1 )

{lim [(1 ) ] }{lim [(1 ) ] }.

n u x n u x

n x x

x u x n u

x x

u n n u n x x

x x





 

  



 

    

  
  

 

Since a well known result is that 
1/

0lim [(1 ) ]x

x x e   , and on the other hand  n  as 0x   

imply that ( , )n u   0 as 0x  , for fixed u ,  we obtain 
22 /2lim (1 2 ( , ) )n u

n u n n u n e 

    , 

and thus 
2 / 2lim ( ) u

n u e 

   , for any u , 
2 / 2ue

 being continuous at 0u  , with lim (0) 1n   , 

and so we deduce that   is itself a characteristic function (in other words we are not in presence of a 

pathological situation such as that described in exercise 5.12.35 and solution of [5, p. 266]). It results 

from these arguments that ( )u is indeed the characteristic function of ( )X XX m  . On the other 

hand 
2 / 2ue

 is the characteristic function of a standard normal random variable and hence, by the 

continuity theorem for characteristic functions concerning the univariate case (see for instance [4, p. 

190]), ( )X XX m  converges in distribution towards a N(0,1) random variable as n . This is 

equivalent to saying that ( )X nm n converges in distribution towards N(0,
2 ), with 

2 ( ) 'jVar tX t t     (where prime denotes transpose), and thus 
1

1
[ ( )]

n

j j

j

tX E tX
n 

  converges 

in distribution towards a  N(0, 't t ) random variable (see also proof of Theorem 3.4.3 of [1, p. 81]). 

The characteristic function of the latter variable is as given by [4, p. 187], Example (5), and reduces to 

21
'

2
s t t

e




for our case since the mean is 0. Thus we have that for each 1( ,..., )pt t  

                                  

2

1

1
1[ ( )]

'
2lim ( , ) lim ( )

n

j

j

is tX E tXj
s t tn

n nt s E e e 




 


  .   

 

Like in [2, p. 383] or in [1, p. 81], we take 1s   in order to obtain  

                                   
1

1
1[ ( )]

'
2lim ( ,1) lim ( )

n

j

j

i tX E tXj
t tn

n nt E e e 




 


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Note that 1 1

1 1
[ ( )] ( )

( ,1) ( ) ( )

n n

j j

j j

i tX E tXj it X
n n

t E e E e


  

  
   is the characteristic function of 

1

1
( )

n

j

j

X
n




 . On the other hand 

1
'

2lim ( ,1)
t t

n t e




   is continuous at 

1( ,..., ) (0,...,0) 0pt t t   , with lim (0,1) 1n   , and so by means of the continuity theorem for 

characteristic functions that concern the multivariate case (see Theorem 2.6.4 of [1, pp. 48-49]) we 

have that lim ( ,1)n t  is identical with the characteristic function 

1
'

2
t t

e




 of a normally distributed 

vector random variable N( 0 ,Σ) (see [5, p. 187]), Example (6), or Theorem 2.6.1 of [1, p. 45], for 

documentation on the characteristic function 

1
'

2
t t

e




). We thus conclude that 
1

1
( )

n

j

j

X
n




  

converges in distribution towards a normally distributed N( 0 ,Σ) vector random variable, and hence 

Theorem 1 is proved.  

 

3. Conclusion 

 

The above arguments underline the obvious implication (and thus the crucial role) of univariate 

statistical techniques for proving multivariate results. These techniques arise from the use of the 

random variable 
1

1
[ ( )]

n

j j

j

tX E tX
n 

  and its characteristic function ( , )t s in the proof of Theorem 

1. Remark that they are also involved in the proof of Lindeberg-Lévy’s theorem. Finally it is 

noteworthy to stress that the idea of using the variable 
1

1
[ ( )]

n

j j

j

tX E tX
n 

  and its characteristic 

function in the preceding section occurs naturally in view of Theorem 29.4 of [2, p. 383]. 
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